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On the Mellin transforms of hypergeometric polynomials
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Abstract. Mellin integral transform pairs for all hypergeometric orthogonal polynomials in the
Askey scheme, ranging from the classical Hermite polynomials up to the four-parameter Wilson
polynomials, are systematically discussed.

1. Introduction

Integral transforms are an extensively used tool in solving various boundary value problems
and integral equations. Recently, it has become clear that the classical integral transforms may
also help us in revealing close relations between certainq-special functions. For example,
variousq-special functions exhibit simple behaviour with respect to the Fourier–Gauss integral
transform although this transform is based on theq-independent exponential kernel. Instances
of already known transforms of this type reveal novel relations between some polynomial
families (such as theq-Hermite andq−1-Hermite [1], the Rogers–Szegö and Stieltjes–Wigert
[2], and theq-Laguerre and Wall polynomials [3]),q-exponential functions [4,5] andq-Bessel
functions of Jackson [3].

To continue this line of research, we wish to discuss the Mellin integral transforms of
hypergeometric orthogonal polynomials from the Askey scheme [6].

The Mellin integral transform is given by (see, for example, [7,8])

g(z) =M{f (t); z} =
∫ ∞

0
f (t)tz−1 dt. (1.1)

As follows from the definition (1.1) the Mellin transforms of the functionst cf (t) and
dn f (t)/dtn areg(z+c) and(−1)n(z−n)ng(z−n), respectively, where(z)n = 0(z+n)/0(z),
n = 0, 1, 2, . . . , is the shifted factorial. Consequently,

M
{
tk

dnf (t)

dtn
; z
}
= (−1)n(z + k − n)ng(z + k − n) k, n = 0, 1, 2, . . . (1.2)

and this means that if a functionf (t) satisfies some differential equation with polynomial
coefficients int , then its Mellin transformg(z) is governed by a difference equation in the
variablez, which is determined by the correspondence (1.2). Thus, (1.1) provides a general
route for establishing integral transforms between solutions of differential and difference
equations.
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A simple example of (1.1) is given by the Mellin transform of e−t which is just the gamma
function:

0(z) :=
∫ ∞

0
e−t t z−1 dt Rez > 0. (1.3)

It is clear that the Mellin transform of e−t times any polynomial int gives a polynomial of
the same degree inz, multiplied by the gamma function0(z). Indeed, ifpn(t) =

∑n
k=0 cn,kt

k

is some polynomial in the variablet , then∫ ∞
0
pn(t)e

−t t z−1 dt =
n∑
k=0

cn,k

∫ ∞
0

e−t t z+k−1 dt = 0(z)
n∑
k=0

cn,k(z)k. (1.4)

The inverse Mellin transform with respect to (1.3) is

1

2π

∫ ∞
−∞

t−z0(z) dIm z = e−t t > 0. (1.5)

To verify (1.5), multiply both sides of (1.3) byτ−z, τ > 0, and integrate it with respect to Imz
in infinite limits (−∞,∞) by using the following property

δ[φ(x)] =
∑
s

δ(x − xs)
|φ′(xs)| φ′(x) = dφ(x)

dx
(1.6)

of theδ-function, wherexs are zeros of the equationφ(x) = 0.
Observe that the inverse Mellin transform of0(z + k), wherek is any positive integer

number, yieldstke−t in complete agreement with the general correspondence rule (1.2) for the
case whenn = 0.

These properties of the Mellin transform (1.3) are known (see, for example, formulae (11)
on p 337 and (27) on p 365 in [8]) and the relations (1.3)–(1.5) are sufficient to define the
Mellin transform pairs for the hypergeometric orthogonal polynomials up to the third level in
the Askey scheme [6]. Their explicit forms are discussed in sections 2–4.

It is more difficult to find the Mellin transform pairs for the family of dual Hahn
polynomials (the fourth level) and the Wilson polynomials (the fifth level). In order to do
so we need to know the Mellin transform pairs for the function0(z)0(z∗) = |0(z)|2. With
the aid of (1.3) and (1.6) it is not hard to evaluate that

1

2π

∫ ∞
−∞

t−z|0(z)|2 dIm z = 0(2Rez)

(1 + t)2Rez
. (1.7)

Of course, the Mellin transform of the right-hand side of (1.7) reproduces|0(z)|2. Indeed, to
verify that

0(2Rez)
∫ ∞

0

t z−1 dt

(1 + t)2Rez
= 0(2Rez)B(z, z∗) = 0(z)0(z∗) (1.8)

one needs only to employ the well-known integral representation

B(z, ζ ) =
∫ ∞

0

t z−1 dt

(1 + t)z+ζ
Rez > 0, Reζ > 0 (1.9)

for the beta functionB(z, ζ ) and the relationB(z, ζ ) = 0(z)0(ζ )/0(z + ζ ).
The explicit forms (which are possibly new) of the Mellin transform pairs for the family

of dual Hahn and the Wilson polynomials, obtained by using the relation (1.7), are discussed
in sections 5 and 6, respectively.

This paper is thus aimed at assembling Mellin transform pairsf (t) andg(z) among all
hypergeometric orthogonal polynomials from the Askey scheme [6], ranging from the classical
Hermite polynomials up to the four-parameter Wilson polynomials.



Letter to the Editor L35

2. The first level: the Hermite polynomials

The lowest level in the Askey scheme of hypergeometric orthogonal polynomials corresponds
to the classical Hermite polynomials

Hn(x) := (2x)n2F0(−n/2,−(n− 1)/2;−1/x2). (2.1)

It is thus natural to start with the Mellin transform forHn(at)e−t .
Depending on whethern is even or odd, the Hermite polynomials (2.1) contain only even

or odd powers ofx, respectively. Therefore, it is convenient to evaluate their Mellin transforms
by using the formulae

H2n(x) = (−1)n
(2n)!

n!
1F1

(
−n; 1

2
; x2

)
= (−1)n

(2n)!

n!

n∑
k=0

(−n)k
( 1

2)k

x2k

k!
(2.2a)

H2n+1(x) = (−1)n
(2n + 1)!

n!
2x 1F1

(
−n; 3

2
; x2

)
= (−1)n

(2n + 1)!

n!
2x

n∑
k=0

(−n)k
( 3

2)k

x2k

k!
. (2.2b)

From (2.2a) it now follows that∫ ∞
0
t z−1H2n(at)e

−t dt = (−1)n
(2n)!

n!
3F1

(
−n, z/2, (z + 1)/2; 1

2
; 4a2

)
0(z) (2.3a)

upon employing the duplication formula

0(2z) = 22z−1

√
π
0(z)0

(
z +

1

2

)
(2.4)

for the gamma function0(z). Similarly, from (2.2b) one obtains that∫ ∞
0
t z−1H2n+1(at)e

−t dt = (−1)n
(2n + 1)!

n!
3F1

(
−n, 1 + z/2, (z + 1)/2; 3

2
; 4a2

)
0(z).

(2.3b)

Thus, the Mellin transform ofHn(at)e−t has the form∫ ∞
0
t z−1Hn(at)e

−t dt = gn(z; 2a)0(z) (2.5)

where

g2n(z; a) = (−1)n
(2n)!

n!
3F1

(
−n, z/2, (z + 1)/2; 1

2
; a2

)
(2.6a)

g2n+1(z; a) = (−1)n
(2n + 1)!

n!
az 3F1

(
−n, 1 + z/2, (z + 1)/2; 3

2
; a2

)
. (2.6b)

Observe thatgn(z; a) are polynomials ofnth degree in both the variablez and the parametera.
Since the Hermite polynomials (2.1) satisfy a second-order differential equation[

d2

dx2
− 2x

d

dx
+ 2n

]
Hn(x) = 0 (2.7)

from the correspondence rule (1.2) it follows that the polynomialsgn(z; a) are solutions of the
difference equation{

2

[
1− exp

(
− d

dz

)]2

+ a2z

[
1− exp

(
d

dz

)]
+ na2

}
gn(z; a) = 0 (2.8)

with respect to the variablez.
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3. The second level: the Laguerre and the Charlier polynomials

The second level in the Askey scheme of hypergeometric orthogonal polynomials corresponds
to the Laguerre and the Charlier polynomials, which depend on one parameter.

The Laguerre polynomials. We start with a Mellin transform pair for the Laguerre
polynomials, which are defined as

L(α)n (z) := (α + 1)n
n!

1F1(−n;α + 1; z) = (α + 1)n
n!

n∑
k=0

(−n)k
(α + 1)k

zk

k!
. (3.1)

The Laguerre polynomials (3.1) satisfy a second-order differential equation[
z

d2

dz2
+ (α + 1− z) d

dz
+ n

]
L(α)n (z) = 0. (3.2)

The Mellin transform ofL(α)n (at)e
−t is∫ ∞

0
L(α)n (at)t

z−1e−t dt = (α + 1)n
n!

2F1(−n, z;α + 1; a)0(z). (3.3)

This follows from the definition (3.1) upon employing the integral representation (1.3) for the
gamma function0(z).

The hypergeometric polynomials2F1 in the right-hand side of (3.3) are in fact the Meixner–
Pollaczek polynomials

P (ν)n (y;φ) := (2ν)n
n!

einφ
2F1(−n, ν + iy; 2ν; 1− e−2iφ)

= (2ν)n
n!

einφ
n∑
k=0

(−n)k(ν + iy)k
(2ν)kk!

(1− e−2iφ)k (3.4)

which depend on two parametersν andφ and therefore correspond to the third level in the
Askey scheme [6].

Thus from (3.3) and (3.4) we obtain that∫ ∞
0
L(2Rez−1)
n ((1− e−2iφ)t)tz−1e−t dt = e−inφP (Rez)

n (Im z;φ)0(z). (3.5)

The inverse Mellin transform with respect to (3.5) is

1

2π

∫ ∞
−∞

t−zP (Rez)
n (Im z;φ)0(z) dIm z = einφL(2Rez−1)

n ((1− e−2iφ)t)e−t . (3.6)

As a consistency check one can combine (3.5) and (3.6) with generating functions for
the Laguerre and Meixner–Pollaczek polynomials to obtain a Mellin transform for the Bessel
functionJα(z). Indeed, these generating functions are of the form

∞∑
n=0

tn

0(n + α + 1)
L(α)n (x) = (xt)−α/2et Jα

(
2
√
xt
)

α > −1 (3.7)

and
∞∑
n=0

(te−iφ)n

(2ν)n
P (ν)n (x;φ) = et 1F1[ν + ix; 2ν; (e−2iφ − 1)t ]. (3.8)

Multiplying both sides of (3.5) byxnein(φ−π/2)/2n(2Rez)n and summing overn from zero to
infinity with the aid of (3.7) and (3.8), yields an integral transform∫ ∞

0
t iy−1/2J2ν−1(2

√
xt)e−t dt = 0(ν + iy)

0(2ν)
xν−1/2e−x 1F1(ν − iy; 2ν; x) (3.9)
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whereν = Rez andy = Im z.
In a similar manner, from (3.6) follows the inverse integral transform

1

2π

∫ ∞
−∞

t−iy0(ν + iy)1F1(ν − iy; 2ν; x) dy = 0(2ν)x1/2−ν t1/2ex−t J2ν−1

(
2
√
xt
)
. (3.10)

The change of the variablest1/2→ t , x1/2→ x, and the shift of the parameterν → ν + 1
2 in

(3.9) lead to an integral transform∫ ∞
0
t2iyJ2ν(2xt)e

−t2 dt = 0(ν + iy + 1
2)

20(2ν + 1)
x2νe−x

2

1F1(ν − iy + 1
2; 2ν + 1; x2) (3.11)

that is contained in [8,9].
We close this subsection by the following remark. The Meixner–Pollaczek polynomials

(3.4) are known to be solutions of the difference equation{
eiφ(ν − ix) exp

(
i

d

dx

)
− e−iφ(ν + ix) exp

(
−i

d

dx

)
+ 2i[x cosφ − (n + ν) sinφ]

}
×P (ν)n (x;φ) = 0. (3.12)

One may verify that the differential equation (3.2) for the Laguerre polynomials (3.1) and
the difference equation (3.12) are thus interrelated by the Mellin transforms (3.5) and (3.6) in
complete agreement with the correspondence rule (1.2).

The Charlier polynomials. The Charlier polynomialsCn(x; a) are defined as

Cn(x; a) := 2F0(−n,−x;−1/a) =
n∑
k=0

(−1)k
(−n)k(−x)k

k!ak
. (3.13)

They satisfy the difference equation[
a exp

(
d

dx

)
+ x exp

(
− d

dx

)
+ n− x − a

]
Cn(x; a) = 0. (3.14)

From (1.4) and (3.13) follows that the inverse Mellin transform ofCn(−z; a)0(z) is

1

2π

∫ ∞
−∞

t−zCn(−z; a)0(z)dIm z = (1 + t/a)ne−t (3.15)

where we have used the relation(−n)k = (−1)k( n
k
)k!. In other words,Cn(−z; a)0(z) is the

Mellin transform of the simple expression(1 + t/a)ne−t . According to the correspondence
rule (1.2), the difference equation (3.14) and the inverse Mellin transform (3.15) lead to the
first-order differential equation[

(t + a)
d

dt
− n

]
(1 + t/a)n = 0 (3.16)

satisfied by thenth power of the binomial 1 +t/a.

4. The third level: the Jacobi and the Meixner polynomials

The third level in the Askey scheme of hypergeometric orthogonal polynomials [6] corresponds
to the Meixner–Pollaczek, Jacobi, Meixner and Kravchuk polynomials, which depend on two
parameters. As we have shown in the previous section, the Meixner–Pollaczek polynomials
are related by the Mellin transform with the Laguerre polynomials.
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The Jacobi polynomials.A two-parameter family of the Jacobi polynomials is defined by

P (α,β)n (z) := (α + 1)n
n!

2F1

(
−n, n + α + β + 1;α + 1; 1− z

2

)
= (α + 1)n

n!

n∑
k=0

(−n)k(n + α + β + 1)k
2kk!(α + 1)k

(1− z)k. (4.1)

These polynomials satisfy a second-order differential equation of the form{
(1− z2)

d2

dz2
+ [β − α − (α + β + 2)z]

d

dz
+ n(n + α + β + 1)

}
P (α,β)n (z) = 0. (4.2)

Using the definition (4.1) and the integral representation (1.3), it is not hard to evaluate that∫ ∞
0
P (α,β)n (1− 2xt)tz−1e−t dt = (α + 1)n

n!
3F1(−n, z, n + α + β + 1;α + 1; x)0(z). (4.3)

The inverse Mellin transform of (4.3) is

1

2π

∫ ∞
−∞

t−z3F1(−n, z, n + α + β + 1;α + 1; x)0(z) dIm z = n!

(α + 1)n
P (α,β)n (1− 2xt)e−t .

(4.4)

Thus, as in the case of the Laguerre polynomials, the Mellin transforms (4.3) and (4.4)
connect the third level in the hierarchical ladder of hypergeometric orthogonal polynomials [6]
with the next one.

Note that the Jacobi polynomials (4.1) with particular values of the parametersα andβ
are known to correspond to: the Gegenbauer (or ultraspherical) polynomialsC(λ)n (x), when
α = β = λ − 1

2; the Chebyshev polynomials of the firstTn(x) and the secondUn(x) kind,
if α = β = − 1

2 andα = β = 1
2, respectively; and the Legendre (or spherical) polynomials

Pn(x), whenα = β = 0. The Mellin transforms (4.3) and (4.4) therefore contain all these
special cases of the Jacobi polynomials.

The Meixner and the Kravchuk polynomials.The Meixner polynomialsMn(z;β, c) are
defined by

Mn(z;β, c) = 2F1(−z,−n;β; 1− 1/c). (4.5)

Since they satisfy the difference equation[
c(z + β) exp

(
d

dz

)
+ z exp

(
− d

dz

)]
Mn(z;β, c) = [(c + 1)z + n(c − 1) + βc]Mn(z;β, c)

(4.6)

we need to evaluate the inverse Mellin transform of theMn(−z;β, c)0(z) (cf (3.15)). From
(1.4) and (4.5) it follows that

1

2π

∫ ∞
−∞

t−zMn(−z;β, c)0(z)dIm z = 1F1(−n;β; (1− 1/c)t)e−t

= n!

(β)n
L(β−1)
n ((1− 1/c)t)e−t . (4.7)

It remains only to remind the reader that the Kravchuk polynomials

Kn(z;p,N) := 2F1(−z,−n;−N; 1/p) n = 0, 1, . . . , N (4.8)

can be obtained from the Meixner polynomials (4.5) by substitutingβ = −N and c =
p/(p − 1).
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5. The fourth level: the continuous Hahn and the dual Hahn polynomials

The fourth level in the Askey scheme of hypergeometric orthogonal polynomials is occupied
by the continuous Hahn, the Hahn, the continuous dual Hahn and the dual Hahn polynomials.

The continuous Hahn and the Hahn polynomials.The evaluation of the inverse Mellin
transforms for the continuous Hahn polynomials [6,10]

hn(z; a, b, c, d) := in

n!
(a + c)n(a + d)n 3F2

(−n, n + a + b + c + d − 1, a + iz

a + c, a + d

∣∣∣∣1)
= in

n!
(a + c)n(a + d)n

n∑
k=0

(−n)k(n + a + b + c + d − 1)k
k!(a + c)k(a + d)k

(a + iz)k (5.1)

and the Hahn polynomials

Qn(z;α, β,N) := 3F2

(−n, n + α + β + 1,−z
α + 1, −N

∣∣∣∣1) (5.2)

can be easily performed in exactly the same way as for the polynomials from the previous two
levels. The result is
1

2π

∫ ∞
−∞

t−(a+iy)hn(y; a, b, c, d)0(a + iy) dy

= in

n!
(a + c)n(a + d)n 2F2

(−n, n + a + b + c + d − 1

a + c, a + d

∣∣∣∣t) e−t (5.3)

and
1

2π

∫ ∞
−∞

t−zQn(−z;α, β,N)0(z)dIm z = 2F2

(−n, n + α + β + 1

α + 1,−N
∣∣∣∣t) e−t (5.4)

respectively.
The correspondence rule (1.2) transforms the difference equation

[(a + iz)(b + iz)(e−i d
dz − 1) + (c − iz)(d − iz)(ei d

dz − 1)]hn(z; a, b, c, d)
= n(n + a + b + c + d − 1)hn(z; a, b, c, d) (5.5)

for the continuous Hahn polynomials (5.1) into a third-order differential equation{
t2

d3

dt3
+ [2a + c + d + 1− t ]t d2

dt2
+ [(a + c)(a + d)

−(a + b + c + d)t ]
d

dt
+ n(n + a + b + c + d − 1)

}
× 2F2

(−n, n + a + b + c + d − 1

a + c, a + d

∣∣∣∣t) = 0 (5.6)

in the variablet . The2F2-polynomials in (5.4) satisfy the same type of differential equation,
which is readily obtained from (5.6) by the substitutionsa + c → α + 1, a + d → −N , and
a + b + c + d → α + β + 2.

The continuous dual Hahn and the dual Hahn polynomials.The situation with the two
remaining families at the fourth level is a little different. The point is that the continuous dual
Hahn and the dual Hahn polynomials are defined [6] as

Sn(x
2; a, b, c) = (a + b)n(a + c)n3F2

(−n, a + ix, a − ix

a + b, a + c

∣∣∣∣1) (5.7)
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and

Rn(λ(x); γ, δ,N) = 3F2

(−n,−x, x + γ + δ + 1

γ + 1,−N
∣∣∣∣1) n = 0, 1, 2, . . . , N

λ(x) = x(x + γ + δ + 1)
(5.8)

respectively. In both of these cases the dependence on the variable enters the product of two
shifted factorials(a + ix)k and (a − ix)k, or (−x)k and (x + γ + δ + 1)k, respectively. To
evaluate the inverse Mellin transforms of (5.7), or (5.8), it is therefore necessary to use the
relation (1.7), rather than (1.5). Indeed, from (5.7) and (1.7) with the aid of the duplication
formula (2.4) one obtains

1

2π

∫ ∞
−∞

t−zSn((Im z)2; a, b, c)|0(z)|2 dIm z = (a + b)n(a + c)n
0(2a)

(1 + t)2a

×3F2

(−n, a, a + 1
2

a + b, a + c

∣∣∣∣ 4t

(1 + t)2

)
Rez = a > 0.

(5.9)

Similarly, from (5.8) and (1.7) follows that the inverse Mellin transform of the dual Hahn
polynomials is

1

2π

∫ ∞
−∞
t−zRn(−|z|2; γ, δ,N)|0(z)|2 dIm z

= 0(2Rez)

(1 + t)2Rez 3F2

(−n,Rez,Rez + 1
2

γ + 1,−N
∣∣∣∣ 4t

(1 + t)2

)
Im (γ + δ) = 0 2Rez = γ + δ + 1> 0.

(5.10)

6. The fifth level: the Wilson and the Racah polynomials

The top level in the Askey scheme of hypergeometric orthogonal polynomials is occupied by
the Wilson and the Racah polynomials, which are defined [6] as

Wn(x
2; a, b, c, d) = (a + b)n(a + c)n(a + d)n

× 4F3

(−n, n + a + b + c + d − 1, a + ix, a − ix

a + b, a + c, a + d

∣∣∣∣1) (6.1)

and

Rn(λ(x);α, β, γ, δ) = 4F3

(−n, n + α + β + 1,−x, x + γ + δ + 1

α + 1, β + δ + 1, γ + 1

∣∣∣∣1)
n = 0, 1, 2, . . . , N λ(x) = x(x + γ + δ + 1)

(6.2)

respectively.
From the relations (6.1) and (1.7) with the aid of the duplication formula (2.4) one obtains

the inverse Mellin transform

1

2π

∫ ∞
−∞

t−(a+iy)Wn(y
2; a, b, c, d)|0(a + iy)|2 dy = (a + b)n(a + c)n(a + d)n

0(2a)

(1 + t)2a

×4F3

(−n, n + a + b + c + d − 1, a, a + 1
2

a + b, a + c, a + d

∣∣∣∣ 4t

(1 + t)2

)
(6.3)

for the Wilson polynomials(Rea > 0).
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Similarly, from (6.2) and (1.7) follows that the inverse Mellin transform for the Racah
polynomials has the form

1

2π

∫ ∞
−∞

t−zRn(−|z|2;α, β, γ,N)|0(z)|2 dIm z

= 0(2Rez)

(1 + t)2Rez

4F3

(−n, n + α + β + 1,Rez,Rez + 1
2

α + 1, β + δ + 1, γ + 1

∣∣∣∣ 4t

(1 + t)2

)
2Rez = γ + δ + 1> 0.

Discussions with V Kuznetsov, F Leyvraz, P Winternitz and K B Wolf are gratefully
acknowledged. This work is partially supported by the UNAM–DGAPA project IN106595.
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